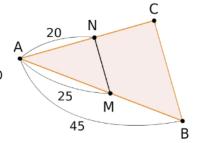
CHAPITRE 10 – THÉORÈME DE THALÈS

I) Le théorème de Thalès

<u>Théorème</u>: Soient deux droites (d) et (d') sécantes en A. On considère B et M deux points distincts de (d), et C et N deux points distincts de (d'). Si (BC) // (MN), alors $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$.

Exemple:


Dans le triangle ABC, M ∈ [AB], N ∈ [AC] et les droites (BC) et (MN) sont parallèles.

Donc, d'après le théorème de Thalès, on a : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$, ce qui donne, en remplaçant

par les longueurs connues : $\frac{25}{45} = \frac{20}{AC} = \frac{MN}{BC}$

Notez bien qu'il aurait été impossible de déterminer BC ou MN : il faut nécessairement l'une des deux données pour déterminer l'autre. En clair, si l'on connaît un des côtés, on peut déterminer le côté manquant correspondant.

Calcul de AC: $\frac{25}{45} = \frac{20}{AC} \text{ donc } 25 \times AC = 45 \times 20$ $AC = \frac{45 \times 20}{25}$ donc AC = 36 mm

Remarques:

• Le théorème de Thalès est une application de la proportionnalité. En effet, on aurait pu dresser le tableau suivant puis traiter ce problème comme un problème de proportionnalité.

Petit côté	3 (AB)	? (AC)
Grand côté correspondant	7 (AM)	4 (AN)

• On peut constater que les deux triangles sont deux triangles semblables au sens du *Chapitre* 7.

Vidéos : Le cours – Théorème de Thalès

https://www.youtube.com/watch?v=JpU7X7AhB-A&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=1

Calculer une longueur à l'aide du théorème de Thalès (1)

https://www.youtube.com/watch?v=zP16D2Zrv1A&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=3

Calculer une longueur à l'aide du théorème de Thalès (2)

https://www.youtube.com/watch?v=RnN4UtfUkI8&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=4
Résoudre un problème à l'aide du théorème de Thalès

https://www.youtube.com/watch?v=hmJQNkpi0gI&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=5 EXERCICE: Résoudre un problème à l'aide du théorème de Thalès

https://www.youtube.com/watch?v=3lCqoS2IxGQ&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=6

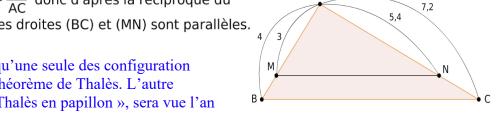
II) La réciproque du théorème de Thalès

Tout comme le théorème de Pythagore vu plus tôt dans l'année, le théorème de Thalès fonctionne dans les deux sens. On a alors l'énoncé réciproque suivant :

Théorème : Soient deux droites (d) et (d') sécantes en A. On considère B et M deux points distincts de (d), et C et N deux points distincts de (d'). Si $\frac{AM}{AB} = \frac{AN}{AC}$, alors (MN) // (BC).

Remarque : Évidemment, si l'égalité n'est pas vérifiée, alors les droites ne sont pas parallèles !

Exemple: Dans le triangle ci-dessous, les droites (MN) et (BC) sont-elles parallèles ?


Dans le triangle ABC, M $_{\epsilon}$ [AB] et N $_{\epsilon}$ [AC]. On calcule séparément les rapports $\frac{AM}{AB}$ et $\frac{AN}{AC}$.

D'une part,
$$\frac{AM}{AB} = \frac{3}{4}$$
.

D'une part,
$$\frac{AM}{AB} = \frac{3}{4}$$
. D'autre part, $\frac{AN}{AC} = \frac{5,4}{7,2} = \frac{54}{72} = \frac{18 \times 3}{18 \times 4} = \frac{3}{4}$.

On constate que $\frac{AM}{AB} = \frac{AN}{AC}$ donc d'après la réciproque du

théorème de Thalès, les droites (BC) et (MN) sont parallèles.

Remarque: Ceci n'est qu'une seule des configuration possible pour utiliser le théorème de Thalès. L'autre configuration appelée « Thalès en papillon », sera vue l'an

prochain. Elle concerne le cas où les deux triangles ne sont pas emboîtés l'un dans l'autre.

Vidéos: Le cours

https://www.youtube.com/watch?v= 6d-3GHwKRc&list=PLVUDmbpupCaqDDhBn9p n1heduTYLK109&index=2 Appliquer la réciproque du théorème de Thalès (1)

https://www.youtube.com/watch?v=U9XX5w8FeOI&list=PLVUDmbpupCaqDDhBn9p n1heduTYLK109&index=7 Appliquer la réciproque du théorème de Thalès (2)

https://www.youtube.com/watch?v=-hb1F24QsrI&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=8

EXERCICE : Appliquer la réciproque du théorème de Thalès et sa réciproque (1)

https://www.youtube.com/watch?v=YfTp0mBBexQ&list=PLVUDmbpupCaqDDhBn9p_n1heduTYLK109&index=9 EXERCICE : Appliquer la réciproque du théorème de Thalès et sa réciproque (2)

https://www.youtube.com/watch?v=4jYzkihBG c&list=PLVUDmbpupCaqDDhBn9p n1heduTYLK109&index=10

EXERCICES – CHAPITRE 10

I) Le théorème de Thalès, p77-78

Complète les pointillés pour que les rapports soient égaux.

a. $\frac{4}{5} = \frac{\dots}{7,5}$	b. $\frac{9}{12} = \frac{1}{12}$	

c.
$$\frac{.....}{4,2} = \frac{5}{6}$$

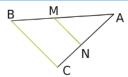
e.
$$\frac{3}{8} = \frac{\dots}{12}$$

f.
$$\frac{2,4}{3} = \frac{4}{\dots}$$

g.
$$\frac{.....}{14} = \frac{7.5}{10.5}$$

h.
$$\frac{2,1}{...} = \frac{3}{7}$$

i.
$$\frac{7}{11} = \frac{....}{9.9}$$

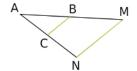

g.
$$\frac{\dots}{14} = \frac{7.5}{10.5}$$
 h. $\frac{2.1}{\dots} = \frac{3}{7}$ **i.** $\frac{7}{11} = \frac{\dots}{9.9}$ **j.** $\frac{7.8}{\dots} = \frac{6}{6.5}$ **k.** $\frac{4.5}{6} = \frac{36}{\dots}$ **l.** $\frac{4.7}{6.3} = \frac{\dots}{32.76}$

k.
$$\frac{4,5}{6} = \frac{36}{\dots}$$

1.
$$\frac{4,7}{6,3} = \frac{.....}{32,76}$$

2 Les droites en vert sont parallèles. Retrouve, pour chaque figure, les deux triangles et les deux droites parallèles puis écris l'égalité de rapports correspondante.

a.


Petit triangle:

Grand triangle:

······ = ······ = ······

......

Droites: (.....) // (.....)

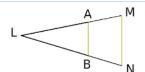


Petit triangle :

Grand triangle:

······ = ······ = ······

Droites: (.....) // (.....)

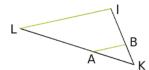

Petit triangle:

Grand triangle:

Droites: (.....) // (.....)

······ = ······ = ······

d.

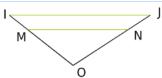

Petit triangle :

Grand triangle :

Droites: (.....) // (.....)

······ = ····· = ······

e.


Petit triangle :

Grand triangle :

Droites: (.....) // (.....)

······ = ······ = ······

f.

Petit triangle :

Grand triangle :

Droites: (.....) // (.....)

······ = ······ = ······

3 En te référant à l'exercice 2, écris puis résous l'équation permettant de retrouver le côté manquant.

a. AM = 5 ; AB = 6 ; AC = 7,2 Calcule AN.
= donc AN =

b. AB = 2; AC = 2,5; AM = 8 Calcule AN.

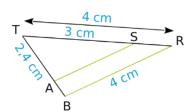
..... = donc AN =

c. DE = 7; DF = 8; DI = 8,4 Calcule DJ.

..... = donc DJ =

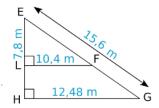
 $d.\ LB=3$; LN=18 ; AB=2 Calcule MN.

 $\frac{\dots}{\dots} = \frac{\dots}{\dots}$ donc MN =


e. KA = 9; KL = 11; LI = 16,5 Calcule AB.

 $\frac{\dots}{\dots} = \frac{\dots}{\dots}$ donc AB =

f. OI = 6; OM = 1.5; IJ = 4.4 Calcule MN.


..... = donc MN =

Les droites
(AS) et (BR)
sont parallèles.
On veut calculer
AS et TB.
Complète
les pointillés.

4 On considère la figure ci-contre.

a. Que dire des droites (LF) et (HG) ?

Dans le triangle BRT, S ∈ [TR], ∈ et

(AS) (BR). Donc, d'après le théorème de Thalès,

on a : = =

soit $\frac{\dots}{\dots} = \frac{\dots}{\dots} = \frac{\dots}{\dots}$

......

b. Calcule EH et EF.

<u>Calcul de TB</u>:

..... =

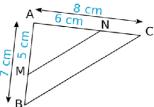
soit TB =×......

Donc TB = cm.

<u>Calcul de AS</u>:

······ = ······

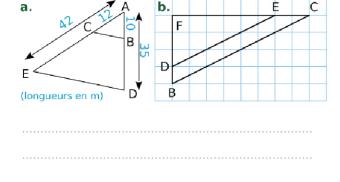
soit AS =×.....

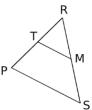

Donc AS = cm.

.....

II) Réciproque du théorème, p.80

3 Les points A, M, B sont alignés, ainsi que les points A, N et C.


On veut montrer que les droites (MN) et (BC) ne sont pas parallèles.


a. Calcule et compare les rapports $\frac{AM}{AB}$ et $\frac{AN}{AC}$.

AM _	AN _
AB =	AC =

- b. Conclus.
- 2 Dans chaque cas, démontre que les droites (BC) et (DE) sont parallèles.

Sur la figure ci-contre, RM = 4 cm; RS = 5 cm; RT = 6 cm et RP = 7,5 cm. Les points R, T et P sont alignés, ainsi que les points R, M et S. On veut montrer que les droites (MT) et (SP) sont parallèles.

a. Compare les rapports $\frac{RM}{RS}$ et $\frac{RT}{RP}$.

RM		RT	
RS	=	RP =	

b. Précise la disposition des points.

•	0		C	20	0	n	ıC	ı	ι	ıs	i.																				