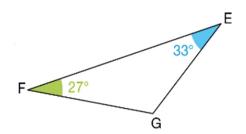
CHAPITRE 3 – TRIANGLES – PARTIE 1

I) Angles dans un triangle

1) Généralités

<u>Propriété</u>: Dans un triangle, la somme des trois mesures des angles est toujours égale à 180°.



Exemple : On considère le triangle EFG suivant. Calculer la mesure de l'angle en G. On a $\widehat{EFG} + \widehat{FEG} = 27 + 33 = 60^{\circ}$. Le troisième angle mesure alors $\widehat{EGF} = 180 - 60 = 120^{\circ}$

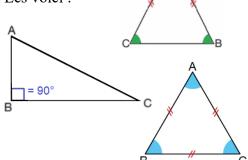
Vidéo : Appliquer la règle des 180° dans un triangle

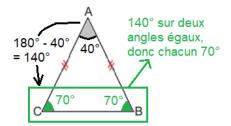
https://www.youtube.com/watch?v=S1vCp-O7fbw&list=PLVUDmbpupCaqW33IMWG2n 73O4Jy7GEse&index=11

2) Cas des triangles particuliers

Il existe quelques propriétés si le triangle n'est pas quelconque. Les voici :

- Si un triangle ABC est **isocèle** est A, alors ses angles \widehat{ABC} et \widehat{ACB} ont la même mesure. Inversement, un triangle possèdant deux angles de mesures égales est isocèle.
- Si un triangle est **équilatéral**, alors ses trois angles mesurent 60°. Inversement si un triangle possède trois angles de mesure 60°; il est équilatéral.
- Si un triangle est **rectangle**, alors on se rappelera que l'angle droit possède une mesure de 90°





Exemple : ABC est un triangle isocèle en A. On sait que l'angle en A mesure 40°. Il reste donc 180 - 40 = 140° à partager sur les deux autres angles. Mais le triangle est isocèle, donc les deux angles sont égaux. Ainsi $\widehat{ABC} = \widehat{ACB} = \frac{140°}{2} = 70°$

<u>Vidéos</u>: Calculer un angle dans un triangle (1)

https://www.youtube.com/watch?v=x0UA6kbiDcM&list=PLVUDmbpupCaqW33IMWG2n_73O4Jy7GEse&index=12 Calculer un angle dans un triangle (2)

https://www.youtube.com/watch?v=7cMDjPpQhoc&list=PLVUDmbpupCaqW33IMWG2n_73O4Jy7GEse&index=13 EXERCICE: Calculer des angles dans le triangle

https://www.youtube.com/watch?v=jPkmKqt-6n4&list=PLVUDmbpupCaqW33IMWG2n 73O4Jy7GEse&index=14

II) Inégalité triangulaire

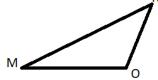
<u>Propriété</u>: (*l'inégalité triangulaire*) Dans un triangle, la longueur d'un côté est toujours inférieure à la somme des longueurs des deux autres côtés. S'il y a égalité, alors le triangle est « plat » : ses trois sommets sont alignés.

Exemple: Dans le triangle MNO ci-après, on a les inégalités:

MN < NO + MO

MO < NO + MN

NO < MO + MN



Triangle quelconque it de vérifier que la longueur

<u>Conséquence</u>: Pour savoir si on peut construire un triangle, il suffit de vérifier que la longueur du plus grand côté est inférieure à la somme des longueurs des deux autres côtés.

Exemples: • Peut-on construire un triangle SUN tel que SU = 3cm, UN = 4cm et NS = 5cm? D'une part la plus grande longueur est SN = 5cm. D'autre part SU + UN = 3 + 4 = 7cm. On a ainsi SN < SU + UN car S < 7. Donc SUN est constructible.

• Peut-on construire un triangle PAF tel que PA = 2cm, AF = 4cm et PF = 7cm? D'une part la plus grande longueur est PF = 7cm. D'autre part PA + AF = 2 + 4 = 6cm. L'inégalité triangulaire donne alors PF < PA + AF, soit T < 6, ce qui est T < 6 aux. Ainsi T < 6 constructible.

Vidéos : Appliquer l'inégalité triangulaire (1)

https://www.youtube.com/watch?v=JPinXSVQGWE&list=PLVUDmbpupCaqW33IMWG2n_73O4Jy7GEse&index=5
Appliquer l'inégalité triangulaire (2)

https://www.youtube.com/watch?v=3DD7kj53jI0&list=PLVUDmbpupCaqW33IMWG2n_73O4Jy7GEse&index=6
Appliquer l'inégalité triangulaire (3)

https://www.youtube.com/watch?v=hwCjjX6R2XM&list=PLVUDmbpupCaqW33IMWG2n 73O4Jy7GEse&index=7

III) Construction à l'aide d'outils géométriques

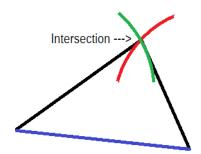
Avec le bon matériel, on peut construire un triangle dont on connait :

- 1) Les trois longueurs (règle et compas).
- 2) La longueur de deux côtés et de la mesure d'angle qu'ils délimitent (*règle et rapporteur*)
- 3) La longueur d'un côté et les deux mesures d'angles qui lui sont adjacents (*règle et rapporteur*).

Pour chacun des cas précédents, on peut utiliser une des méthodes adaptées qui suivent. Les points à la fin de chaque étape sont de la même couleur que le tracé correspondant sur le dessin.

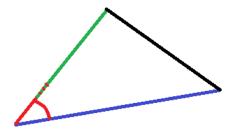
Méthode – Cas n°1 – 3 côtés connus, 0 angle connu :

- a) Tracer un premier côté.
- b) Ouvrir le compas de telle sorte à ce que l'ouverture soit égale à la mesure du deuxième côté. Placer le compas sur une des extrêmités du premier côté et tracer un arc de cercle.
- c) Faire de même avec la mesure du troisième côté en placant le compas sur l'autre extrêmité. •
- d) Les deux arcs de cercle se croisent : c'est le dernier point du triangle. Le relier aux deux autres. •



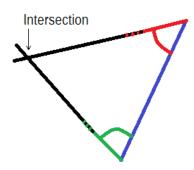
Méthode – Cas n°2 – 2 côtés connus, 1 angles connu:

- a) Tracer un premier côté.
- b) Avec le rapporteur, faire l'angle connu sur l'une des extrêmités du premier côté. •
- c) Prolonger le côté adjacent à l'angle fait, de la mesure du deuxième côté connu. •
- d) Relier les deux extrêmités "isolées" pour obtenir le troisième côté du triangle. ●



<u>Méthode – Cas n°3 – 1 côté connu, 2 angles connus :</u>

- a) Tracer le côté connu.
- b) Avec le rapporteur, faire un des deux angles connus sur l'une des extrêmités du premier côté. •
- c) Faire de même pour le deuxième angle sur la deuxième extrêmité du côté. •
- d) Prolonger les deux côtés adjacents aux angles : ils s'intersectent au troisième point du triangle. •



Remarque: Pour que deux triangles soient égaux, leurs trois côtés respectifs doivent être égaux deux à deux. Ce sera le cas si on les trace à l'aide d'une des trois méthodes ci-dessus. Cependant, le dernier cas (0 côté connu, 3 angles connus) qui n'a pas été abordé ne garantit pas l'égalité de deux triangles. On verra en troisième que l'on appelle ceci des triangles semblables.

Vidéos : Construire un triangle (1)

https://www.youtube.com/watch?v=-7UGauYeTdk&list=PLVUDmbpupCaqW33IMWG2n_73O4Jy7GEse Construire un triangle (2)

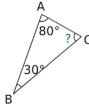
https://www.youtube.com/watch?v=6mFBqacFzws&list=PLVUDmbpupCaqW33IMWG2n_73O4Jy7GEse&index=2 Construire un triangle (3)

https://www.youtube.com/watch?v=tX-vhEtJJzY&list=PLVUDmbpupCaqW33IMWG2n 73O4Jy7GEse&index=3

EXERCICES - CHAPITRE 3

I) Angles dans un triangle, p.95

Calcule la mesure d'angle manquante.

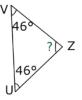


b.

P	
R	
99	
1	

с.

03,	2.7	
	Т	
\triangleright		
460		



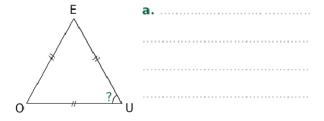
.....

	Mesure des angles du triangle MNP						
	MNP	NPM					
a.	124°						
b.	71°		29°				
c.		98,1°	59,6°				
d.	49,5°		113°				

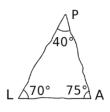
Pour chaque cas ci-dessous, calcule la mesure

d'angle manquante dans le triangle MNP.

2 Calcule, pour chaque triangle, la mesure de l'angle marquée d'un point d'interrogation.



4 Les figures suivantes sont tracées à main levée. Pour chacune d'elles, indique si elles sont constructibles ou non. Justifie ta réponse.



3 Calcule la somme des mesures des angles du triangle ABC et indique si ce triangle existe ou non.

	Angles du triangle ABC		Somme des	Construc-		
	ÂBC	BCA	CAB	mesures	tible ?	
a.	68°	27°	75°			
b.	43°	58°	101°			
c.	62,1°	72,8°	45°			
d.	34,5°	82°	63,5°			

E	c.
/55°\	
c	
3	
R	

b	R	∑52° "	, , , , , , , , , , , , , , , , , , ,	d		
I) Inégalité triangulaire, p.102						
3 Indique si chacun des triangles ci-dessous est co	nstru	ictible. Jus	stifie.			
$V = \frac{g \text{ cm}}{15 \text{ cm}} \text{ W}$	GH GI	angle GHI I = 6 cm = 5 cm = 8 cm	tel que :	c		
G 4,5 cm O	Triangle SNV tel que : d. SN = 5,01 cm SV = 4,9 cm NV = 1,1 mm					
1 NOR et SUD sont deux triangles isocèles, respectivement en N et en S, de même périmètre 4 Sébastien veut construire un triangle FOU dont il connait les longueurs OU et FU. Parmi les longueurs proposées pour le côté [OF], entoure la (ou les) mesure(s) possible(s).						
10,5 cm. Avec les informations données sur les		OU	FU		OF	
figures ci-contre, est-il 0 2,5 cm possible de tracer de tels	a.	15	7	5	9	10
triangles ? Justifie.	b.	11	9	1	14	21
	c.	9,4	4,6	6,2	13	14,01
	d.	7,6	3,5	4,1	11,01	12
« ABCD est un quadrilatère tel que : AB = 3 cm ; BC : Après plusieurs essais sans succès, Marie réalise qu'u Corrige l'énoncé en changeant une longueur pour qu quatre points.	une d	pour m ; AC = les longue	eurs est f	En voici l'é D = 3 cm ausse.	énoncé :	1 cm. »

III) Construction à l'aide d'outils géométriques, p.104

1 Trace chacun de ces triangles, à partir de figure à main levée proposée.

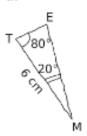
а

b.

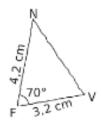
R /----

c.

d.



e.



2 Pour chaque triangle, trace d'abord une figure à main levée, puis construis-la

a. Un triangle ABC tel que :
 AB = 3,5 cm, BC = 5 cm et AC = 6 cm.

b. Un triangle HTU tel que : HT = 5 cm, HU = 2 cm et THU = 100°.

1 |-----|T

c. Un triangle GKO tel que : $GK = 5.5 \text{ cm}, \ \overrightarrow{GKO} = 45^{\circ} \text{ et } \overrightarrow{KGO} = 35^{\circ}.$

d. Un triangle LMN tel que : LM = 6 cm, LN = 3 cm et \widehat{NLM} = 49°.

e. Un triangle PRS tel que : PSR = 124°, SPR = 18° et SP = 5,5 cm.